پروژه آنالیز جریان بر روی سرریز اوجی بر اساس (CFD)

تحقیق و پروژه و پایان نامه و مقاله دانشجویی

 عنوان :

پروژه آنالیز جریان بر روی سرریز اوجی بر اساس (CFD)

تعداد صفحات :۱۱۹

نوع فایل : ورد و قابل ویرایش

چکیده:

در این پایان نامه نحوه رفتار جریان برروی تاج سرریز اوجی سد انحرافی گرمسار با استفاده از نرم افزار fluent مورد بررسی قرارگرفته است. از آنجائیکه برای مهار آبهای سطحی و سیلاب ها از سدهای انحرافی با سرریز اوجی استفاده می گرد لذا ضروریت انجام این تحقیق آن است علل فرسایش و کاویتاسیون برروی سرریز اوجی سد انحرافی گرمسار مشخص گردد و هدف این تحقیق آن است با توجه به دقت نتایج بدست آمده براساس مدل عددی CFD)) برروی سرریز اوجی و با استفاده از نرم افزار Fluent بتوان با اطمینان خاطر بیشتری ازمدلهای (CFD) استفاده کرد.

روش انجام کار بدین گونه می باشد که ابتدا بایستی مدل تاج سرریز توسط یک نرم افزار پیش پردازنده مدلسازی گردد نرم افزاری پیش پردازنده Fluent نرم افزار gambit می باشد که از قابلیت های خوبی برای شبکه بندی و معرفی شرایط مرزی مدل برخوردار است.

این تحقیق نشان می‌دهد که برای بررسی رفتار جریان آب بر روی سرریز اوجی، روش‌های عددی به طور مؤثری تخلیه، فشارها و سرعت را به روی مجرای آبریز محاسبه می‌کنند.

روشهای عددی، یک قابلیت پیش‌بینی را در طراحی یا تجزیه و تحلیل سرریزها در اختیار مهندسین قرار می‌دهد. این روش ممکن است بسیار ارزشمند باشد به خصوص برای ارزیابی مجدد یک سد در زمانی که سرریز بخواهد سیلابهای بیشتری را از خود عبور دهد. البته استفاده از روشهای عددی یک روش کافی و یا ضروری نیست ولی روشهای عددی پاسخ‌هایی را پیشنهاد می‌کند که ممکن است در هزینه و زمان از مدل فیزیکی کمتر باشد. اگر چه مدل فیزیکی ممکن است پر هزینه تر و وقت‌گیرتر باشد اما کامل‌تر از تحقیقات عددی است.

از طرفی مدلهای عددی ارزش تهیه بیشتر اطلاعات را دارا هستند و همچنین نشان دهنده سرعت و فشار کاملاً‌ مجزا می‌باشند و تغییر جریان مدل عددی از جریان زیر بحرانی به فوق بحرانی آسان است.

-بهینه سازی جریان روی سرریز با استفاده از مدل ۴-K به منظور مدل کردن آشفتگی، نتایج  مناسبی ارائه می دهد.

-تغییر در هندسه سرریز باعث تغییر درتوزیع فشاربر روی سطح سرریز ودبی عبوری از روی سرریز می شود که این نکته کاملاً قابل مشاهده می باشد و می توان از این نکته درکاهش هزینه سرریز و افزایش ظرفیت سرریز استفاده نمود و بطوریکه با افزایش انحناء سرریز فشار منفی روی تاج کاهش می یابد و این به معنی هزینه بیشتر درساخت سرریز است.

-نتایج بدست آمده درتوزیع فشار و دبی عبوری ازروی سرریز با نتایج آزمایشگای USBR بیشتر همخوانی دارد.

-با افزایش بلندای آب، فشار روی سطح سرریز کاهش می یابد تا به حدی که اگر بلندای آب پیش از بلندای طراحی باشد دراین صورت فشار منفی برسطح سرریز ایجاد می گردد که با آنچه که تصور می شود همخوانی دارد. یعنی برای H/Hd بزرگتر از ۱ فشار منفی رخ می دهد. درصورتیکه درسرریز اوجی سد انحرافی گرمسار برای H/Hd=1 نیز فشار منفی رخ داده که نشان دهنده آن است که منحنی تاج سرریز نامناسب طراحی شده است.

 با افزایش بلندای آب پشت سرریز دبی عبوری از سرریز نیز افزایش می یابد.

واژه های کلیدی: رفتار جریان ،  سرریز،  سد انحرافی گرمسار ،مدل CFD ، مدل حجم سیال(VOF)

فهرست مطالب

چکیده:   ۱
فصل اول   ۲
کلیات   ۲
مقدمه   ۳
درفصل پنجم نتایج بدست آمده از نرم افزار fluent برروی مدل سرریز اوجی سد انحرافی گرمسار ارائه شده است که دراین فصل به بررسی اشکال بدست آمده پرداخته شده است و درفصل ششم نتیجه گیری و پیشنهادات مربوط به این تحقیق ارائه شده است.   ۵
CFD چیست؟   ۶
نقش CFD در دنیای فناوری مدرن   ۷
اهمیت انتقال حرارت و جریان سیال   ۱۰
متدهای شبیه سازی   ۱۰
امتیازات یک محاسبه تئوری   ۱۱
هزینه کم   ۱۱
اطلاعات کامل   ۱۲
توانایی شبیه سازی شرایط واقعی   ۱۲
توانایی شبیه‌سازی شرایط ایده‌آل   ۱۲
نارساییهای محاسبه تئوری   ۱۳
انتخاب روش   ۱۳
یک برنامه CFD چگونه کار می‌کند؟   ۱۴
توضیح سازگاری و پایداری   ۱۵
فصل دوم   ۱۷
تاریخچه   ۱۷
تاریخچه   ۱۸
فصل سوم   ۲۴
مفاهیم اساسی پایان‌نامه   ۲۴
۳-۱- مقدمه   ۲۵
۳-۲- انتخاب دبی طرح برای سرریز   ۲۵
۳-۳- شکل‌گیری سرریز از نوع پیوند (Ogee)   ۲۶
۳-۴- سرریز WES   ۲۸
۳-۴-۱- طراحی هیدرولیکی سرریز WES   ۲۹
۳-۴-۱- اثر ارتفاع سرریز و ارتفاع آب در سراب بر ضریب C   ۲۹
۳-۴-۲- اثر شیب بدنه در سراب بر ضریب C   ۲۹
۳-۴-۳- اثر ارتفاع آب و رقوم کف در پایاب بر ضریب C   ۳۰
۳-۴-۴- اثر پایه‌های پل و دماغه سواحل بر ضریب دبی جریان   ۳۲
۳-۴-۵- طراحی بدنه سرریز WES   ۳۳
۳-۴-۶- طراحی بدنه سرریز کوتاه بدون دریچه WES در تنداب‌ها   ۳۵
۳-۵- کنترل‌کاویتاسیون در سرریزهای بلند   ۳۶
فصل چهارم   ۳۹
مواد و متدولوژی تحقیق   ۳۹
۴-۱- نگاهی گذرا به چگونگی استفاده از نرم‌افزار فلوئنت   ۴۳
۴-۱-۱- چگونگی شبیه‌سازی جریان به روش CFD   ۴۴
۴-۱-۲- راه‌ اندازی نرم‌افزار فلوئنت   ۴۶
۴-۱-۲-۱-راه‌اندازی نرم‌افزار فلوئنت در سیستم عامل UNIX   ۴۷
۴-۱-۲-۲-راه‌اندازی نرم‌افزار فلوئنت در سیستم عامل WINDOWS   ۴۷
۴-۲- روشهای حل معادلات   ۵۰
۴-۳- جریانهای چندفازی   ۵۵
۴-۳-۱- مدل حجم سیال(VOF)   ۵۶
۴-۳-۱-۱- تئوری مدل VOF   ۵۷
۴-۳-۱-۲-میانیابی در مرز تقابل بین فازها   ۵۸
۴-۳-۱-۳- روش تجدید ساختار هندسی   ۵۹
۴-۳-۱-۴- روش Donor-Acceptor   ۶۰
۴-۳-۱-۵- روش صریح اولر   ۶۰
۴-۳-۱-۶- روش ضمنی   ۶۱
۴-۳-۱-۹- کشش سطح   ۶۲
۴-۳-۱-۱۰- چسبندگی دیواره   ۶۳
۴-۳-۲- چگونگی استفاده از مدل VOF   ۶۴
– فعال سازی مدل VOF   ۶۵
– تعریف فازها   ۶۶
– فعال سازی کشش سطحی و چسبندگی دیواره   ۶۶
– انتخاب فرمولاسیون VOF   ۶۶
– چند مثال نمونه   ۶۸
۴-۳-۲-۱-تنظیم پارامترهای شبیه‌سازی جریان ناپایا برای مدل VOF   ۶۸
وارد کردن نیروی وزن در محاسبات VOF   ۶۹
تعیین شرائط مرزی   ۷۰
– تعیین شرائط اولیه کسرهای حجمی   ۷۱
– استراتژیهای حل   ۷۱
۴-۳-۲-۳-پس پردازش مدل VOF   ۷۳
۴-۳-۳- مدل کاویتاسیون   ۷۳
۴-۳-۳-۱- تئوری مدل کاویتاسیون   ۷۴
۴-۳-۳-۲- معادله کسر حجمی   ۷۴
۴-۳-۳-۳- محاسبه انتقال جرم بین فازها   ۷۵
۴-۳-۳-۴- چگونگی استفاده از مدل کاویتاسیون   ۷۶
– فعال‌ کردن مدل کاویتاسیون   ۷۶
– تعریف فازها   ۷۷
– تنظیم پارامترهای مدلسازی کاویتاسیون   ۷۷
– تأثیر نیروی وزن در محاسبات کاویتاسیون   ۷۸
– تعیین شرائط مرزی   ۷۸
۴-۳-۳-۵- استراتژی حل   ۷۸
۴-۳-۴- مدل اختلاط خطای جبری (ASM)   ۷۸
۴-۳-۴-۱- تئوری مدل اختلاط خطای جبری (ASM)   ۷۹
– معادله کسر حجمی فاز ثانویه   ۸۱
۴-۳-۴-۲- چگونگی استفاده از مدل ASM   ۸۲
– فعال‌ کردن مدل ASM   ۸۲
– تنظیم پارامترهای مدل ASM   ۸۳
– تعیین شرائط مرزی   ۸۳
– تعیین شرائط اولیه کسرهای حجمی   ۸۴
۴-۳-۴-۳- استراتژی حل   ۸۴
۴-۳-۵- سد انحرافی گرمسار:   ۸۵
مقدمه:   ۸۵
۴-۳-۵-۱- مشخصات جغرافیای و عمومی سد انحراف گرمسار   ۸۶
فصل پنجم   ۹۲
نتایج آنالیز جریان بر روی سرریز سد انحرافی گرمسار   ۹۲
۵-۱ مراحل آنالیز جریان بر روی سرریز اوجی سد انحرافی گرمسار با استفاده از برنامه Fluent   ۹۳
۵-۱-۱- تعریف کردن هدفهای شبیه‌سازی   ۹۳
۵-۱-۲- انتخاب مدل محاسباتی   ۹۳
۵-۱-۳- انتخاب مدل فیزیکی   ۹۳
۵-۱-۴- مراحل انجام پروژه تحقیقات:   ۹۴
۵-۱-۴-۱ تولید شکل :   ۹۴
۵-۱-۴-۲- شبکه بندی در نرم‌افزارهای پیش‌پردازنده:   ۹۴
۵-۱-۴-۳- انواع شبکه‌ بندی   ۹۶
۵-۱-۴-۴- شبکه‌بندی سرریز اوجی سد انحرافی گرمسار:   ۹۷
۵-۱-۴-۵- بررسی شبکه‌بندی مدل سرریز اوجی انحرافی گرمسار   ۹۸
۵-۱-۵- تعیین شرایط مرزی برای شبکه‌بندی مدل سرریز اوجی سد انحرافی گرمسار   ۱۰۲
۵-۱-۶- انتخاب شیوه محاسباتی و فرمول بندی حل مدل سرریز اوجی سد گرمسار در برنامه Fluent   ۱۰۴
۵-۱-۷- تعیین خواص سیال   ۱۰۴
فصل ششم   ۱۱۰
نتیجه‌گیری و پیشنهادات   ۱۱۰
نتیجه‌گیری :   ۱۱۱
پیشنهادات:   ۱۱۲
مراجع و منابع   ۱۱۳

منابع

[۱] دینامیک سیالات محاسباتی برای مهندسان/تألیف ک.ا.هافمن، اس.تی.چیانگ/ ترجمه دکتر احمدرضا عظیمیان

[۲] سازه‌های انتقال آب/تألیف دکتر محمد کریم بیرامی/ مرکز نشر دانشگاهی صنعتی اصفهان

[۳]G.F. Pinder, W.G. Gary, “Is there a difference in the finite difference methods.” Wat. Resou. Res 12(1), pp105-107,1976.

[۴] [۱K. Versteeg, W. Malasekera ,“An introduction to computational fluid dynamics.”,۱۹۹۵٫

[۵] “Cavitation In Chutes And Spill Ways”, USBR. Publication, U.S.A.1990.

[۶] D.K.H.Ho,K.M.Boyes And S.M.Donohoo “Investigation Of Spillway Behaviour Under Increased Maximum Flood By Computational Fluid Dynamic Technique”,’ tth Australasian Fluid Mechanics Conference 2001

[۷] M P. Holloway & A fl. Bottche , “Best mangement practices for reducing nitrate contamination of the groundwater on davirv frams.”۱۹۹۶

[۸] P. Wesseling, A. Segal. C.G. Kassels, “Computing flows on general three-dimensional nonsmooth staggered grids.”, J. Comp. Phys,149 .pp.333-362,1999.

[۹] S.V. Patankar. “Numerical heat. transfer and fluid flow.”, Hemisphere Publishing Corporation, 1980.

[۱۰] C. M. Rhie and W. L. chow. Numerical Study of turbulent Flow Past an Airfoil with Trailing Edge Separation. AIAA Journal, 21(11):1525-1532, November 1983.

[۱۱] R. I. Issa. Solution of  Implicitly Discritized  Fluid Flow Equations by Operator Splitting.  J. Comput. Phys., 62:90-65, 1986.

[۱۲] J. M. Weiss and W. A. Smith. Preconditioning Applied to Variable and Constant Density Flows. AIAA Journal, 33(11):2050-2057, November 1995.

[۱۳ J. P. Vandoormaal and G. D. Raithby. Enhancements of  the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer. Heat Transfer, 7:197-163, 1989

[۱۴] T. J. Barth and D. Jespersen. The design and application of Up-Wind schemes on unstructured meshes. Technical Report AIAA-890366, AIAA 27th Aerospace Science Meeting, Reno, Nevada, 1989

[۱۵] K. Unarni ,T. Kawachi ,M. Munir Babar And H. Itagaki,” Two-Dimensional Numerical Model Of Spiliway Flow”, Journal Of 1-lydraulic Engineering ,April 1999.

مقدمه

درمسائل مهندسی امروزی شناخت رفتار یا عکس العمل یک پدیده نقش بسزائی دربررسی نتایج بدست آمده و طراحی دقیق مسائل مهندسی دارد، بطوریکه یک پژوهشگر یا محقق با  شناخت چگونگی رفتار یک پدیده دربرخورد با مسائل مختلف می تواند وضعیت فیزیکی پدیده را درقبال مسائل مختلف مهندسی بهبود بخشد.

به عنوان مثال درطراحی بدنه خودرو اگر یک محقق عکس العمل یا رفتار هوا نسبت به خودرو را درسرعت های بالا درنظر نگیرد باعث مشکلات عدیده ای خواهد شد بطوریکه دراین حالت ضریب بازدارندگی افزایش و درنتیجه نیروی بازدارندگی نیز افزایش می یابد و اتومبیل برای رسیدن به یک سرعت مناسب بایستی نیروی بیشتری راتولید کند که در نتیجه باعث افزایش مصرف سوخت و سایر مشکلات خواهدشد. اما امروزه کارشناسان با شناخت رفتار و عکس العمل هوا نسبت به بدنه خودرو به این نتیجه رسیده اند که بایستی بدنه خودروها حالت آیرودینامیکی داشته باشد تا با مشکلات ذکر شده مواجه نشوند.

لذا شناخت پدیده و عکس العمل آن نسبت به مسائل مختلف در امور مهندسی امروزی مانند هوا و فضا، هیدرولیک، سیالات و … از اهمیت قابل توجهی برخودار است. دربرخورد مهندسان با مسائل و موضوعات هیدرولیکی مشخص بودن چگونگی رفتار سیال کمک بسیار زیادی را در طراحی هرچه دقیق تر پروژه ها می‌نماید. حل برخی از مسائل هیدرولیکی با روشهای حل تحلیلی امکان پذیر می باشد اما ممکن است دربرخی از موضوعات، حل تحلیلی کمک قابل توجهی را به یک محقق ننماید لذا بایستی ازحل عددی برای بررسی چگونگی رفتار سیال استفاده کرد. یکی از مسائل مهمی که کارشناسان هیدرولیک بایستی با آن آشنا باشند نحوه رفتار جریان برروی سرریزهای سازه های آبی می باشد. یکی از راه های شناخت رفتار جریان برروی سرریز استفاده از مدلهای فیزیکی می باشد.

نتایج مدلهای فیزیکی درصورتیکه شرایط مدل به خوبی ایجاد گردد قابل قبول می‌باشد. اما یکی از مشکلات مدلهای فیزیکی درپروژه های مهندسی مدت زمانی است که طول می کشد تا نتایج مورد بررسی و تجزیه و تحلیل قرار گیرد به طوریکه ممکن است ماهها  و یا دربرخی از موضوعات هیدرولیکی مانند بررسی میزان کاوتیاسیون سالها طول بکشد ویا اینکه یک محقق برای بررسی مدل فیزیکی گزینه های مختلف با محدودیت زمانی مواجه باشد. ساخت مدل فیزیکی و تجزیه و تحلیل نتایج آن هزینه قابل توجهی را درپی دارد لذا دربحث هزینه وزمان ممکن است که یک محقق امکان استفاده از مدلهای مختلف فیزیکی را برای بررسی دقیق تر نتایج نداشته باشد. دربرخی از پدیده ها و موضوعات مهندسی امکان استفاده از مدل فیزیکی نمی باشد به عنوان مثال مدلسازی محیطی با درجه حرارت ۴۰۰۰ درجه به بالا ممکن است بسیار سخت و یا امکان پذیر نباشد. لذا استفاده از حل عددی مسائل کمک شایانی را به یک محقق می نماید تا به بررسی موضوع بپردازد. به طوریکه می توان با کمترین هزینه ودرکمترین زمان گزینه های مختلفی را بررسی کرد.

همانطور که اشاره شد شناخت نحوه رفتار جریان برروی سرریزسازه های  آبی از اهمیت ویژه ای برخوردار است. معمولاً درطراحی سدهای انحرافی ازسرریز نوع اوجی استفاده می شود.

بررسی رفتار جریان برروی تاج سرریز برای دبی های بیشتر از دبی طراحی از اهمیت بسزایی درطراحی تاج سرریز برخودار است به طوریکه اگر فشار ایجاد شده برروی تاج سرریزهای اوجی کمتر از فشار اتمسفر گردد، فشار منفی برروی سرریز که برای دبی های بیشتر از دبی طراحی اتفاق می افتد باعث پدیده کاوتیاسیون می گردد بطوریکه این پدیده خسارات جبران ناپذیری را برای بسیاری از سازه های آبی به بار آورده است. ازجمله سازه های آبی که با این پدیده روبرو هستند می توان به سرریز سد شهید عباسپور اشاره کرد که برای دبی های بیشتر از دبی طراحی، مشکلاتی برای سرریز این سد ایجاد شده است. همچنین می توان به سد انحرافی گرمسار اشاره کرد که تاج سرریز آن دچار خوردگی و کاویتاسیون گردیده است. لذا در این پایان نامه نحوه رفتار جریان برروی تاج سرریز اوجی سد انحرافی گرمسار با استفاده از نرم افزار fluent مورد بررسی قرارگرفته است. از آنجائیکه برای مهار آبهای سطحی و سیلاب ها از سدهای انحرافی با سرریز اوجی استفاده می گرد لذا ضروریت انجام این تحقیق آن است علل فرسایش و کاویتاسیون برروی سرریز اوجی سد انحرافی گرمسار مشخص گردد و هدف این تحقیق آن است با توجه به دقت نتایج بدست آمده براساس مدل عددی CFD)) برروی سرریز اوجی و با استفاده از نرم افزار Fluent بتوان با اطمینان خاطر بیشتری ازمدلهای (CFD) استفاده کرد.

روش انجام کار بدین گونه می باشد که ابتدا بایستی مدل تاج سرریز توسط یک نرم افزار پیش پردازنده مدلسازی گردد نرم افزاری پیش پردازنده Fluent نرم افزار gambit می باشد که از قابلیت های خوبی برای شبکه بندی و معرفی شرایط مرزی مدل برخوردار است.

تشریح فصول مختلف پایان نامه :

درفصل دوم این پایان نامه تاریخچه استفاده از برنامه های CFD ارائه شده است و درفصل سوم مفاهیم اساسی پایان نامه ازجمله، هیدرولیک جریان برروی سرریز اوجی وروشها و معیارهای طراحی سرریز اوجی شرح داده شده است.

درفصل چهارم این پایان نامه توضیحاتی درمورد نرم افزار fluent و روشهای حل عددی به کارگرفته شده دراین نرم افزار شرح داد شده است و نقشه ها و اطلاعات کلی مربوط به سد انحرافی گرمسار ارائه شده است.

درفصل پنجم نتایج بدست آمده از نرم افزار fluent برروی مدل سرریز اوجی سد انحرافی گرمسار ارائه شده است که دراین فصل به بررسی اشکال بدست آمده پرداخته شده است و درفصل ششم نتیجه گیری و پیشنهادات مربوط به این تحقیق ارائه شده است.

جنبه فیزیکی پدیده انتقال در ابعاد ماکروسکوپی، با استفاده از قوانین حرکت نیوتن و اصول اساسی قوانین بقای جرم، ممنتم، انرژی و گونه‌های شیمیایی قانونمند شده است. براساس طبیعت مسئله و کمیتهای مورد نظر، این مفاهیم اساسی را می‌توان بصورت معادلات جبری، دیفرانسیلی و یا انتگرالی بیان نمود.

شبیه‌سازی عددی از جمله تکنیکهایی است که معادلات انتقال حاکم را با معادلات جبری جایگزین کرده و یک توصیف عددی از پدیده‌ها را در فضا و یا دامنه‌های محاسباتی فراهم می‌کند. صرف نظر از طبیعت مسئله شبیه‌سازی عددی مستلزم داشتن مهارت کافی در زمینه‌های مربوطه از جمله محاسبات عددی می‌باشد.

تمام مهندسان از یکی از سه روش تجربی، حل دقیق و حل عددی برای یافتن مقادیر کمیتهای مسائل تعریف شده استفاده می‌کنند. شبیه‌سازی عددی روشی مناسب برای ارائه کمیتهای معادلات انتقال می‌باشد. معمولاً در روشهای عددی مسائل بصورت سعی و خطا و با تکرار بسیار زیاد حل می‌شود. بدیهی است که انجام این کار تنها با استفاده از کامپیوتر امکان پذیر است. پیشرفت تکنیکهای حل عددی و گسترش دامنه کاربرد آن برای مسائل پیچیده‌تر با پیشرفت فناوریهای سخت افزاری و نرم‌افزاری ارتباطی مستقیم دارد. استفاده از ابرکامپیوترها و پردازشگرهای موازی در شبیه‌سازی عددی، مثال بارزی برای اثبات این ادعا است.

CFD چیست؟

CFD یا همان دینامیک سیالات محاسباتی یک تکنیک شبیه‌سازی مجازی است. با استفاده از CFD می‌توان یک جریان را بطور کامل شبیه‌سازی کرد. در شبیه‌سازی جریان به روش CFD لازمست که مراحل زیر به ترتیب اجراء شود.

۱-       مدلسازی فیزیکی.

۲-       تولید شبکه محاسباتی مناسب.

۳-       مدلسازی فیزیکی.

۴-       مدلسازی ریاضی.

۵-       تعیین شرائط مرزی و اولیه.

۶-       تعیین استراتژی حل.

۷-       آنالیز.

۸-       تهیه گزارش۱.

در استفاده روش CFD نه تنها رفتار جریان پیشگوئی می‌گردد، بلکه انتقال حرارت یا جرم، تغییر فاز، واکنشهای شیمیایی، جریانهای چند‌فازی، حرکتهای مکانیکی (همانند حرکت پره‌های پمپ) و خیلی مسائل دیگر مربوط به سیال را نیز می‌توان شبیه‌سازی کرد. البته باید توجه داشت که برای هر مسئله خاص از معادلات حاکم مربوطه و نیز معادلات اسکالر اضافی، استفاده می‌شود.

سه دلیل عمده در بکارگیری از روش CFD وجود دارد. اولین دلیل بینش۲ است. سیستمها و دستگاه‌های متعددی وجود دارد که ساخت آنها با پیچیدگیهای متعددی همراه است. در تمامی شبیه‌سازی جریان به روش CFD می‌توان تمام جزئیات جریان و همچنین آشکارسازی جریان را پوشش داد که با استفاده از روشهای دیگر تقریباً غیر ممکن است. به این ترتیب با استفاده از CFD می‌توان به بینش و بصیرت کافی و همچنین شناخت بیشتر در سیستم یا دستگاه طراحی شده دست یافت  ]۴[. دلیل دوم دوراندیشی است۳ . از آنجا که CFD رفتار جریان را پیشگوئی می‌کند، لذا با تغییر متغیرهای هندسی و یا فیزیکی طراح‌های جدید می‌توان نتایج را براحتی با استفاده از این روش پیش‌بینی کرد. بنابراین در مدت زمان کوتاهی و بدن ساخت سیستم یا دستگاه‌های نمونه می‌توان به کارایی طرح جدید پی برد. و بطور کلی بکمک CFD و با دوراندیشی دقیقتر می‌توان سریعتر و بهتر طراحی کرد ]۴[. در نهایت دلیل سوم کارایی۴ می‌باشد. طراحی سریعتر و بهتر موجب کاهش زمان سیکل طراحی می‌شود. بنابراین در زمان و هزینه تمام شده صرفه‌جویی می‌گردد. تولیدات سریعتر به فاز فروش می‌رسد. بهینه‌سازی‌ها و ساخت نمونه‌های جدیدتر نیز سریعتر انجام شده و در نهایت قیمت تمام شده برای محصولات کمتر می‌شود. بنابراین CFD ابزاری برای کاهش زمان سیکل طراحی و بهینه‌سازی و در نهایت افزایش کارایی صنایع درگیر است ]۴[.

لازم به توضیح است، در بکارگیری از روش CFD و نیز نرم‌افزارهای مربوطه، باید از اطلاعات کافی در زمینه‌های مختلف تئوریها معادلات حاکم، مدلسازی فیزیکی و ریاضی و نیز نقاط ضعف و قوت الگوریتمهای بکار رفته برای شبیه‌سازی برخوردار بود. هرچه اطلاعات کاربران بیشتر باشد سریعتر و دقیقتر به جوابهای نهایی می‌رسند. بطور کلی هر چه به نرم‌افزار و تئوریهای استفاده شده در آنها بیشتر آگاهی داشت می‌توان از نرم‌افزار استفاده بهتری کرد.

 نقش CFD در دنیای فناوری مدرن

شبیه‌سازی عددی جریان بعنوان یک ابزار غیر قابل انکار در مهندسی بکار رفته که بر اساس قوانین مبتنی بر دانش آزمایشگاهی و تحلیلی استوار است. بمنظور دستیابی به تمام جزئیات فیزیکی یک جریان، شبیه‌سازی جریان با توانایی حل معادلات حاکم با تمام پیچیدگیها در اواخر دهه شصت میلادی شکل گرفت و خیلی سریع به ابزاری محبوب و قابل اعتماد در آنالیزهای مهندسی تبدیل شد. امروزه شبیه‌سازی عددی دامنه وسیعی از آنالیزهای مهندسی را پوشش داده است.

      یکی از اصلی‌ترین کاربردهای CFD مربوط به آزمایشهای تونل باد و مطالعات احتراق می‌باشد. استفاده از CFD موجب کاهش قابل توجه هزینه‌های تمام شده نسبت به تستهای تونل باد می‌گردد. محاسبه پارامترهای آئرودینامیکی مربوطه به طراحی‌های مقدماتی بسیار ارزانتر از محاسبه این پارامترها با استفاده از تستهای تونل باد تمام می‌شود. بهمین منظور در صنایع هواپیمایی تمام محاسبات پارامترهای جریان برای طراحی‌های مقدماتی وسایل پرنده جدید از طریق CFD بدست می‌آید و از نتایج تستهای تونل باد تنها در فاز نهایی طراحی و طراحی‌های تفصیلی استفاده می‌شود. علاوه بر این در شبیه‌سازی عددی جریانها، تمام جزئیات مربوط به میدان جریان را می‌توان محاسبه کرده و مشاهده نمود حال آنکه تحقق این امر با استفاده از کارهای آزمایشگاهی اگر امری غیر ممکن نباشد اما بسیار پر هزینه و طولانی مدت خواهد بود. بعنوان مثال برای تعیین ضریب فشار روی یک سطح بال هواپیما، در روش CFD هیچ‌ گونه محدودیت و مشکل پیچیده‌ای وجود ندارد حال آنکه در روش تستهای تونل باد هزینه و مدت زمان ساخت مدل مورد نیاز بسیار گرانقیمت و طولانی می‌باشد. همچنین تعداد نقاط تعبیه شده روی بال نیز محدود می‌باشد. علاوه بر موارد یاد شده در بسیاری از مسائل مهندسی انجان آزمایشهای توأم با واکنشهای شیمیایی (که در بسیاری موارد گازهای سمی حاصل واکنش شیمیایی می‌باشد) و جریانهای همراه با حرارت بسیار بالا از پیچیدگیهای بسیار زیادی برخوردار است در صورتیکه در شبیه‌سازی عددی برای حل اینگونه مسائل مشکلات یاد شده مشاهده نمی‌گردد. همچنین در برخی مطالعات سیالاتی تمایل بر اینست که جریان ایده‌ال در نظر گرفته شود (نظیر جریان آشفته دو بعدی) که شبیه‌سازی این موارد براحتی در CFD امکان پذیر است.

با تمام موارد یاد شده سئوال اصلی در مورد CFD اینست که تا چه اندازه شبیه‌سازی جریان در CFD دقیق بوده و می‌توان به آن اعتماد کرد و اینکه چگونه می‌توان به صحت نتایج حاصل از CFD پی برد. باید توجه داشت که خطا در شبیه‌سازی جریان در CFD غیر قابل انکار است. خطاهای ناشی از مدلسازی ریاضی و گسسته‌سازی معادلات حاکم و تبدیل آنها به معادلات جریان همواره وجود دارد. همچنین خطای گرد کردن مقادیر محاسبه شده بوسیله سخت‌افزار اجتناب ناپذیر است. اما درصورتیکه جریان بدرستی در CFD شبیه‌سازی گردد این خطاها به هیچ عنوان موجب نمی‌شود که نتایج بدست آمده خطای زیادی داشته باشد. در الگوریتمهای جدید بهمراه شبکه‌بندی مناسب بیشترین خطا برای بحرانی‌ترین پارامترها به کمتر از پنج درصد می‌رسد. بهرحال ظهور انواع نرم‌افزارهای CFD و نیز گسترش فعالیتهای تحقیقاتی در این زمینه نشان می‌دهد که CFD ابزاری مناسب و قابل اعتماد برای شبیه‌سازی جریان است.

برای تعیین صحت نتایج بدست آمده از CFD، برای هر رژیم جریان ابتدا باید یک نمونه تست شده بوسیله آزمایش را بعنوان مرجع در نظر گرفت. سپس با آنالیز جریان به روش CFD، حالت بهینه شبیه‌سازی را بدست آورد. در نهایت برای تمام رژیمهای جریان مشابه، از راهکار بهینه یافته شده، استفاده کرد. باید توجه داشت که برای حل میدان جریان مربوط به هر مسئله، لازمست که نتایج بدست آمده مستقل از شبکه محاسباتی تولید شده باشد.

با تائید صحت نتایج بدست آمده به روش CFD، این روش به یک روش سریع و اقتصادی در صنعت تبدیل شده است. امروزه در صنایع مختلفی همچون صنایع هواپیمایی، کشتی‌سازی، خودروسازی، تأسیسات، پتروشیمی، عمران و غیره، CFD بعنوان یک ابزار کاربردی در کشورهای صنعتی بشمار می‌رود. نرم‌افزارهای بسیاری برای شبیه‌سازی رژیمهای مختلف جریان در کشورهای مختلف طراحی و توسعه یافته است.

امروزه استفاده از روشهای عددی در محاسبات کامپیوتری اهمیت زیادی داشته و به عنوان ابزاری کارآمد در طراحی وسایل مهندسی به کار می‌رود. علم دینامیک سیالات محاسباتی (CFD) به صورت یک ابزار توانا برای تحلیل رفتار جریان سیال و انتقال حرارت در سیستمهای با هندسه ناموزون و معادلات حاکم پیچیده برای محققان و مهندسان در آمده و در دهه گذشته پیشرفت چشمگیری داشته است. در دهه ۱۹۸۰ حل مسایل جریان سیال توسط روش CFD، موضوع حوزه تحقیق بسیاری از محققان فوق دکتری،‌دانشجویان دکتری و یا متخصصان شبیه‌سازی که چندین سال به طور اصولی دوره دیده‌اند، در آمده و نرم‌افزارهای تجاری زیادی به وجود آمده است. نرم‌افزارهایی که در حال حاضر در بازار موجود است، ممکن است بسیار قوی باشند، اما عملکرد آنها هنوز نیازمند یک مهارت و درک بسیار بالا از سوی کاربر می‌باشد، تا نتایج قابل قبولی در حالتهای پیچیده به دست آید. در حالی که نرم‌افزارهای تجاری CFD بر اساس المان محدود اخیراً رو به ضعف و زوا می‌باشند، بازار به طور  مستمر در اختیار جهار نرم‌افزار PHOENICS، FLOW3D، STARCD، FLUENT قرار گرفته است که اساس کار همه آنها پایه روش حجم محدود می‌باشند، دقت این نرم‌افزاها توسط محققان زیادی مورد تایید قرار گرفته است. پیچیدگی معادلات حاکم بر مساله تاثیر متقابل محدودیت استفاده از دستگاههای اندازه‌گیری در بسیاری از کاربردهای علمی، از جمله دلایلی هستند که استفاده از روشهای تحلیلی و آزمایشگاهی را در مقایسه با روشهای عددی محدود می‌کند.

گرچه منابع و نوشته‌های متعددی درباره تحلیل محسابات ترموفلوید وجود دارد. اما افراد تازه‌کار در این زمینه امکانات کافی ندارند. دانشجوی کارشناسی ارشد و بالاتر محقق و مهندس مجری یا باید در لابلای مقالات و مجلات کاوش کند، یا به اصول مقدماتی ارایه شده در کتابهای آنالیز عددی بسنده نماید. پیشرفت یا شکست یک فعالیت محاسباتی را اغلب نکات ظریف آن معین می‌کند، در حالی که جزئیات کار که من انجام محاسبات توسط گروههای محاسب موفق آموخته می‌شود،‌ بندرت در نوشته‌های آنها دیده می‌شود. یک نتیجه هم این است که بسیاری از محققین یاکار محاسباتی خود را بعد از پیگیری ماههای زیاد بی‌نتیجه رها می‌کنند، یا طی یک برنامه بی‌ثمر تا انتها به کاوش خود ادامه می‌دهند.

اهمیت انتقال حرارت و جریان سیال

اهمیت نقش این فرآیندها همواره در زندگی ما و بسیاری از کاربردهای عملی مشاهده می‌شود. تقریباً تمام روشهای تولید توان شامل جریان سیال و انتقال حرارت به عنوان فرآیندهای اصلی می‌باشند. همچنین فرآیندها در گرمایش و تهویه مطبوع ساختمان نقش اساسی دارند،‌ در بخش‌های مهمی از صنایع شیمیایی و متالوژی شامل قسمتهایی همچون کوره‌ها، مبدلهای حرارتی، کندانسورها و راکتورهای فرآیندهای ترموفلوید به کار گرفته می‌شوند. اساس کار هواپیماها و راکتها مدیو جریان سیال، انتقال حرارت و فعل و انفعال شیمیایی می‌ باشد. در طراحی ماشینهای الکتریکی و مدارهای الکترونیکی، اغلب انتقال حرارت و فعل و انفعال شیمیایی می‌باشد. در طراحی ماشینهای الکتریکی و مدارهای الکترونیک، اغلب انتقال حرارت عامل محدودکننده می‌باشد. آلودگی محیط زیست اکثراً ناشی از انتقال حرارت و جرم می‌باشد، همچنین این عوامل در ایجاد طوفانها، سیلابها و آتش سوزیها نقش دارند. در مقابل حرارت و جرم می‌باشد، همچنین این عوامل در ایجاد طوفانها، سیلابها و آتش‌سوزیها نقش دارند. در مقابل تغییر شرایط جوی، بدن انسان به وسیلله انتقال حرارت و جرم درجه حرارتش را کنترل می‌نماید. به نظر می‌رسد فرآیندهای انتقال حرارت و جریان سیال به تمام جنبه‌های زندگی ما سرایت کرده است.

متدهای شبیه سازی

پیشگویی فرآیندهای انتقال حرارت و حرارت و جریان سیال به وسیله دو رشو اصلی انجام می‌شود: تحقیق آزمایشگاهی و محاسات تئوری.

اطلاعات دقیق در مورد یک فرآیند فیزیکی غالباً توسط اندازه‌گیری عملی به دست می‌آید. تحقیق آزمایشگاهی انجام شده درمورد یک دستگاه که اندازه‌هایش عیناً‌اندازه‌های دستگاه اصلی باشد، جهت پیشگویی چگونگی کار نسخه‌های مشاه از دستگاه مذکور تحت همان شرایط استفاده می‌شود،‌اما در بیشتر حالتها انجام چنین آزمایشهایی به علت بزرگ بودن اندازه‌های دستگاه، بسیار گران و اغلب غیرممکن است،‌لذا آزمایشها روی مدلهایی با اندازه‌هایی در مقیاس کوچکتر انجام می‌شود، ‌هر چند اینجا‌ هم نسئله بسط دادن اطلاعات به دست آمده از نمونه کوچکتر همیشه تمام جنبه‌های دستگاه اصلی را شبیه‌سازی نمی‌کنند و غالباً جنبه‌های مهم مانند احتراق از آزمایشهای مربوط به مدل حذف می‌شوند. این محدودیتها، مفید بودن نتایج آزمایش را بیشتر کاهش می‌دهند، بالاخره، باید به خاطر داشت که در بسیاری از حالتها، ‌مشکلات جدی اندازه‌گیری وجود داشته و وسایل اندازه‌گیری نیز عاری از خطا نمی‌باشند.

یک پیشگویی تئوری حداکثر استفاده را از نتایج مدل ریاضی خواهد برد و در مقایسه با آن نتایج تجربی را مورد استفاه کمتری قرار می‌دهد. برای فرآیندهای فیزیکی مورد نظر ما اصولاً مدل ریاضی عبارت است از یک سری معادلات دیفرانسیل اگر قرار بود از روشهای ریاضیات کلاسیک درحل این معادلات استفاده شود امکان پیشگویی برای بسیاری از پدیده‌های سودمند وجود نداشت. با کمی توجه به یک متن کلاسیک درباره انتقال حرارت یا مکانیک سیالات مشخص می‌شود که فقط برای تعداد اندکی از مسایل عملی می‌توان به معادلات غیرجبری،‌ مقادیر ویژه و غیره می‌باشند. به طوری که ممکن است، حل عددی آنها کار ساده‌ای نباشد. خوشبختانه، توسعه متدهای عددی و در دسترس بودن پردازشگر‌های بزرگ این اطمینان را به وجود آورده است،‌که تقریباً‌برای هر مساله عملی بتوان از مفاهیم یک مدل ریاضی استفاده کرد.

 امتیازات یک محاسبه تئوری

هزینه کم

مهمترین امتیاز یک پیشگویی محاسباتی هزینه پایین آن است. در بیشتر کاربرده، هزینه به کاربردن یک برنامه‌کامپیوتری به مراتب کمتر از مخارج تحقیق آزمایشگاهی مشابه می‌باشد، این عامل وقتی که وضعیت فیزیکی مورد مطالعه بزرگ و پیچیده‌تر می‌شود اهمیت بیشتری پیدا می‌کند و در حالی که قیمت بیشتر اقلام در حال زیاد شدن است، هزینه‌های محاسبات در آینده احتمالاً کمتر خواهد بود.

سرعت یک تحقیق محاسبه‌ای می‌تواند با سرعت قابل ملاحظه‌ای انجام شود،‌طراح می‌تواند مفاهیم صدها ترکیب از حالتهای مختلف را در کمتر از یک روز مطالعه کرده طرح بهینه را انتخاب نماید. از طرف دیگر بسادگی می‌توان تصور کرد رسیدگی یا تحقیق آزمایشگاهی مشابه نیاز به زمان زیادی خواهد داشت.

اطلاعات کامل

حل کامپیوتری یک مسئله اطلاعات کامل و جزئیات لازم را به ما خواهد داد و مقادیر تمام متغیرهای مربوطه (مانند سرعت، فشار، درجه حرارت، تمرکز نمونه‌های شیمیایی، شدت توربولانس) را در سراسر حوزه مورد علاقه به دست می‌دهد. بر خلاف شرایط نامطلوبی که ضمن آزمایش پیش بینی می‌آید، مکانهای غیرقابل دسترس در یک کار محاسباتی کم بوده و اغتشاش جریان به علت وجود میلهای اندازه‌گیری در آن وجود ندارد. بدیهی است از هیچ بررسی آزمایشگاهی نمی‌توان انتظار داشت تا چگونگی توزیع تمام متغیرها را روی تمام میدان اندازه بگیرد. بنابراین، حتی وقتی یک کار آزمایشگاهی انجام می‌شود، بسیار با ارزش خواهد بود که جهت تکمیل اطلاعات آزمایشگاهی حل کامپیوتری همزمان با آن به دست آید.

توانایی شبیه سازی شرایط واقعی

در یک محاسبه تئوری، چون شرایط واقعی به آسانی می‌توانند شبیه سازی شوند، نیازی نیست به مدلهای با مقیاس کوچک و یا با ریان سرد متوسل شویم. برای یک برنامه کامپیوتری،‌داشتن ابعاد هندسی بسیار بزرگ یا خیلی کوچک، به کار بردن درجات حرارت خیلی کم یا بسیار زیاد، عمل کردن با مواد سمی یا قابل اشتعال،‌تعقیب فرآیندهای بسیار سریع یاخیلی آهسته مشکل مهمی را ایجاد نمی‌کند.

توانایی شبیه‌سازی شرایط ایده‌آل

گاهی اوقات یک متد پیشگویی برای مطالعه یک پدیده پایه استفاده می‌شود، تا یک کاربرد پیچیده مهندسی، برای مطالعه پدیده، شخص توجهش را روی تعداد کمی از پارامترهای اصلی متمرکز کرده و تمام جنبه‌های دیگر را حذف می‌کند. بدین ترتیب، شرایط ایده‌آل زیادی ممکن است بهعنوان شرایط مطلوب مورد ملاحظه قرار گیرند،‌به عنوان مثال می‌‌توان از دو بعدی بودن، ثابت بودن جرم مخصوص، وجود یک سطح آدیاباتیک یا داشتن نرخ نامحدود فعل و انفعال نام برد،‌در یک کار محاسبه‌ای این شرایط می‌توانند به آسانی و دقیقاً‌برقرار شوند. از طرفی حتی در یک آزمایش عملی دقیق به زحمت می‌ـوان به شرایط ایده‌آل نزدیک شد.

نارساییهای محاسبه تئوری


۱ –Post Processing

۲ -Insight

۳ -Foresight

۴ -Efficiency

100,000 ریال – خرید

جهت دریافت و خرید متن کامل مقاله و تحقیق و پایان نامه مربوطه بر روی گزینه خرید انتهای هر تحقیق و پروژه کلیک نمائید و پس از وارد نمودن مشخصات خود به درگاه بانک متصل شده که از طریق کلیه کارت های عضو شتاب قادر به پرداخت می باشید و بلافاصله بعد از پرداخت آنلاین به صورت خودکار  لینک دنلود مقاله و پایان نامه مربوطه فعال گردیده که قادر به دنلود فایل کامل آن می باشد .

مطالب پیشنهادی: برای ثبت نظر خود کلیک کنید ...

به راهنمایی نیاز دارید؟ کلیک کنید

جستجو پیشرفته

پیوندها

دسته‌ها

آخرین بروز رسانی

    یکشنبه, ۹ اردیبهشت , ۱۴۰۳
اولین پایگاه اینترنتی اشتراک و فروش فایلهای دیجیتال ایران
wpdesign Group طراحی و پشتیبانی سایت توسط digitaliran.ir صورت گرفته است
تمامی حقوق برایbankmaghaleh.irمحفوظ می باشد.